Development of the Vibration Absorption Caster-wheel for Wheelchair

--The effect of the vibration absorption and endurance --

Shojiro George TERASHIMA : Niigata Institute of Technology, Japan Yumitsu KIKAWA : Echigo Kogyou Inc., Japan

• Wheelchair users feel vibrations

through caster & seat

• Vibrations lead discomfort

make users get tired

- Needs of additional function: vibration absorbing on wheelchairs / casters
- Main cause of vibration is on the front casters

(Rear wheel are air-tire)

 \rightarrow Focus on front caster wheels

Caster Types

• Air tire type: adjustable hardness, comfort air leak, flat tire (puncture)

• with Shock-absorber: comfort, no-puncture, very expensive (about \$160)

 Low repulsive urethane: comfort, no-puncture, still expensive (about \$115)
 some of them are insufficient function **Development of inexpensive caster wheel that has the function of vibration absorbing.**

•Material: Low repulsive urethane

•Price: \$50.00 /each or less

- •Main requirements:
 - 1. absorb vibration:

Ruggedness of 10mm height or less (5~8mm) 2. without increasing Running Resistance

3. enough stiffness for Running Endurance

 \rightarrow good!

In our previous research:

clarified the basic characteristics.

•Function of vibration absorbing:

Passageway with bumps (indoor) → good!

Stone paved roads (outdoor)

•<u>Running resistance</u>:

not increase so much (easy to propel)

→ Well-balanced design !!

How about Endurance ??

Niigata Institute of Technology, JAPAN

Investigate the running endurance of the caster we have developed (A) Caster we developed (D=75mm)
(B) Urethane type 1 (D=75mm)
(C) Urethane type 2 (D=75mm)
(D) with shock-absorber (D=65mm)
(E) Normal solid caster (D=80mm)

 Running Endurance Testing Machine: (JIS-T9201) double drums driven by speed controlled motor with bumps of 12mm height 200,000 machine's drum revolutions (157km)
 Fix the wheelchair on the testing machine with dummy weight of 75Kg

Methods

Acceleration Pick up Sensor: TEAC 707LF (Max150m/s2) mounted on the housing frame of front caster
Amplifier: TEAC SA-611
Data logger: TEAC ES-8 (Max 2kHz)
Filter: cut ~~0.2Hz(DC), 1kHz~~
MAA: Maximum Amplitude of Acceleration (m/s2)

- Caster (A) : Tiny crack around interface of wheel and tire
 Caster (B) : none
- •Caster (C) : none
- •Caster (D) : none
- •Caster (E) : wear-out, and scar on the surface

Results (MAA)

Niigata Institute of Technology, JAPAN

Caster E

MAA were ranged around 122m/s2.Almost flat data.

(not increase according to the increasing of mileage)

Results (MAA)

Caster A

Niigata Institute of Technology, JAPAN

Regression Line: Y=0.15X+80.8 200 Acceleration(m/s2) 00 150 50 100 Distance(km)

Start from about 80m/s2, reach about 100m/s2.
Reduce 15~35% of MAA against Caster(E).
MAA increases according to the mileage.

Results (MAA)

Niigata Institute of Technology, JAPAN

•This results was dissatisfaction!

•In our previous research: <u>Function of vibration absorbing</u>: GOOD! Passageway with bumps (indoor) Stone paved roads (outdoor)

•In this research (Running Endurance test): <u>Function of vibration absorbing: not so good!</u>

Every crack were at the interface of tire and inner-wheel
Thin urethane tire & too high bump (vs design spec.)
Rim of the inner-wheel hits into edge of the bump
Urethane tire was damaged (crack)

•Leads decreasing of the function

As the design specification: absorb the vibration of 10mm height or less. (mainly 5~8mm)
The height of the bump of this test was 12mm.
→Testing condition of 12mm height

was excess specification !?

Re-arrange and re-produce new trial caster:

Thickness of Urethane tire → +3mm
Diameter of inner wheel → -6mm
Increase hardness of urethane tire

• Investigate the running endurance of the caster we have developed.

- MAA had decreased 15~35%.
- MAA increases according to the mileage.
- The effect of the vibration absorption was not sufficient.
- Re-designing of thickness of tire and

inner-wheel could be the solution.

This research was granted by

Ministry of Economy for Trade and Industry.

